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(P,G)-BRANCHING MARKOV PROCESS

• Particles will live in E a Lusin space (e.g. a Polish space would be enough)

• Let P = (Pt, t ≥ 0) be a semigroup on E.

• Write B+(E) for non-negative bounded measurable functions on E

• Particles evolve independently according to a P-Markov process.

• In an event which we refer to as ‘branching’, particles positioned at x die at rate
β ∈ B+(E) and instantaneously, new particles are created in E according to a point
process.

• The configurations of these offspring are described by the random counting
measure

Z(A) =
N∑

i=1

δxi (A),

with probabilities Px, where x ∈ E is the position of death of the parent.

• Without loss of generality we can assume that Px(N = 1) = 0. On the other hand,
we do allow for the possibility that Px(N = 0) > 0 for some or all x ∈ E.

• Henceforth we refer to this spatial branching process as a (P,G)-branching
Markov process.
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(P,G)-BRANCHING MARKOV PROCESS
• Define the so-called branching mechanism

G[f ](x) := β(x)Ex

[ N∏
i=1

f (xi)− f (x)

]
, x ∈ E,

where we recall f ∈ B+
1 (E) := {f ∈ B+(E) : supx∈E f (x) ≤ 1}.

• Configuration of particles at time t is denoted by {x1(t), . . . , xNt (t)} and, on the
event that the process has not become extinct or exploded,

Xt(·) =

Nt∑
i=1

δxi(t)(·), t ≥ 0.

is Markovian in N(E), the space of integer atomic measures.
• Its probabilities will be denoted P := (Pµ, µ ∈ N(E)).
• Define,

vt[f ](x) = Eδx

 Nt∏
i=1

f (xi(t))

 , f ∈ B+
1 (E), t ≥ 0.

• Non-linear evolution semigroup

vt[f ](x) = Pt[f ](x) +

∫ t

0
Ps [G[vt−s[f ]]] (x)ds, t ≥ 0.
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k-TH MOMENT

• Our main results concern understanding the growth of the k-th moment
functional in time

T
(k)
t [f ](x) := Eδx [〈f ,Xt〉k], x ∈ E, f ∈ B+(E), k ≥ 1, t ≥ 0.

• Notational convenience: Write Tt in place of T(1)
t

• Our objective: to show that for k ≥ 2 and any positive bounded measurable
function f on E,

lim
t→∞

g(t)Eδx [〈f ,Xt〉k] = Ck(x, f )

where the constant Ck(x, f ) can be identified explicitly.

• We need two fundamental assumptions.
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ASSUMPTION (H1)

There exists an eigenvalue λ ∈ R and a corresponding right eigenfunction ϕ ∈ B+(E)
and finite left eigenmeasure ϕ̃ such that, for f ∈ B+(E),

〈Tt[ϕ], µ〉 = eλt〈ϕ, µ〉 and 〈Tt[f ], ϕ̃〉 = eλt〈f , ϕ̃〉,

for all µ ∈ N(E) if (X,P) is a branching Markov process (resp. a superprocess). Further
let us define

∆t = sup
x∈E,f∈B+

1 (E)
|ϕ(x)−1e−λtTt[f ](x)− 〈ϕ̃, f 〉|, t ≥ 0.

We suppose that
sup
t≥0

∆t <∞ and lim
t→∞

∆t = 0.

NOTE: This assumption allows us to talk about criticality of the (P,G)-BMP:

λ = 0 (critical) |λ > 0 (supercritical) |λ < 0 (subcritical)
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ASSUMPTION (H2)k

sup
x∈E
Ex(〈1,Z〉k) <∞.
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THEOREM: THE CRITICAL CASE (λ = 0)

Suppose that (H1) holds along with (H2)k for some k ≥ 2 and λ = 0. Define

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣t−(`−1)ϕ(x)−1T
(`)
t [f ](x)− 2−(`−1)`! 〈f , ϕ̃〉`〈V[ϕ], ϕ̃〉`−1

∣∣∣ ,
where

V[ϕ](x) = β(x)Ex

(
〈ϕ,Z〉2 − 〈ϕ2,Z〉

)
.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

In short, subject to (H1) at criticality and (H2)k, we have, for f ∈ B+
1 (E),

lim
t→∞

t−(k−1)Eδx

[
〈f ,Xt〉k

]
= 2−(k−1)`! 〈f , ϕ̃〉k〈V[ϕ], ϕ̃〉k−1ϕ(x)

"At criticality the k-th moment scales like tk−1"
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IDEAS FROM THE PROOF

• The obvious starting point:

T(k)[f ](x) = (−1)k ∂

∂θ
Eδx [e−θ〈f ,Xt〉]

∣∣∣∣
θ=0

• Recall that

vt[f ](x) = Eδx

 Nt∏
i=1

f (xi(t))

 , f ∈ B+
1 (E), t ≥ 0.

• Non-linear evolution semigroup

vt[f ](x) = Pt[f ](x) +

∫ t

0
Ps [G[vt−s[f ]]] (x)ds, t ≥ 0.

• Hence
vt[e−θf ](x) = Eδx [e−θ〈f ,Xt〉]

• We need a new representation of the non-linear semigroup (vt, t ≥ 0) which
connects us to the assumption (H1).
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LINEAR TO NON-LINEAR SEMIGROUP

• Recall

Tt[f ](x) = T
(1)
t [f ](x) = Eδx [〈f ,Xt〉], t ≥ 0, f ∈ B+

1 (E), x ∈ E.

• For f ∈ B+(E), it is well known that the mean semigroup evolution satisfies

Tt[f ](x) = Pt[f ] +

∫ t

0
Ps [FTt−s[f ]] (x)ds t ≥ 0, x ∈ E, (1)

where

F[f ](x) = β(x)Ex

[ N∑
i=1

f (xi)− f (x)

]
=: β(x)(m[f ](x)− f (x)), x ∈ E.
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LINEAR TO NON-LINEAR SEMIGROUP
We now define a variant of the non-linear evolution semigroup equation

ut[f ](x) = Eδx

1−
Nt∏

i=1

f (xi(t))

 , t ≥ 0, x ∈ E, f ∈ B+
1 (E).

For f ∈ B+
1 (E), define

A[f ](x) = β(x)Ex

[ N∏
i=1

(1− f (xi))− 1 +
N∑

i=1

f (xi)

]
, x ∈ E.

vt[f ](x) = Pt[f ](x)+

∫ t

0
Ps [G[vt−s[f ]]] (x)ds and Tt[f ](x) = Pt[f ]+

∫ t

0
Ps [FTt−s[f ]] (x)ds

gives us.....

Lemma
For all g ∈ B+

1 (E), x ∈ E and t ≥ 0, the non-linear semigroup ut[g](x) satisfies

ut[g](x) = Tt[1− g](x)−
∫ t

0
Ts [A[ut−s[g]]] (x)ds.
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NONLINEAR TO K-TH MOMENT EVOLUTION EQUATION
In terms of our new semigroup equation:

T
(k)
t [f ](x) = (−1)k+1 ∂

k

∂θk ut[e−θf ](x)

∣∣∣∣
θ=0

.

Theorem
Fix k ≥ 2. Assuming (H1) and (H2)k, with the additional assumption that

sup
x∈E,s≤t

T
(`)
s [f ](x) <∞, ` ≤ k− 1, f ∈ B+(E), t ≥ 0, (2)

it holds that

T
(k)
t [f ](x) = Tt[f k](x) +

∫ t

0
Ts

[
βη

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0, (3)

where

η
(k−1)
t−s [f ](x) = Ex

 ∑
[k1,...,kN]2k

( k
k1, . . . , kN

) N∏
j=1

T
(kj)

t−s [f ](xj)

 ,
and [k1, . . . , kN]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that

∑N
i=1 ki = k

and at least two of the ki are strictly positive.
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INDUCTION: k 7→ k + 1

• Suppose the result is true for the first k moments.

• Recall Tt[f ](x)→ 〈f , ϕ̃〉ϕ(x) so that, for k ≥ 2,

lim
t→∞

t−kTt[f k+1](x)→ 0

• Hence:

lim
t→∞

t−kT
(k+1)
t [f ](x)

= lim
t→∞

t−k
∫ t

0
Ts

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) N∏
j=1

T
(kj)

t−s [f ](xj)


 (x)ds

= lim
t→∞

t−(k−1)
∫ 1

0
Tut

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) N∏
j=1

T
(kj)

t(1−u)[f ](xj)


 (x)du

= lim
t→∞

∫ 1

0
Tut

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) (t(1− u))k+1−#{j:kj>0}

tk−1

N∏
j=1

T
(kj)

t(1−u)[f ](xj)

(t(1− u))kj−1


 (x)du
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ROUGH OUTLINE OF THE INDUCTION: k 7→ k + 1
• From the last slide:

lim
t→∞

t−kT
(k+1)
t [f ](x)

= lim
t→∞

∫ 1

0
Tut

[
E·

[ ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) (t(1− u))k+1−#{j:kj>0}

tk−1

N∏
j=1

T
(kj)

t(1−u)[f ](xj)

(t(1− u))kj−1

]]
(x)du

• Largest terms in blue correspond to those summands for which #{j : kj > 0} = 2

• The induction hypothesis plus
∑N

i=1 kj = k + 1 ensures that the product term is
asymptotically a constant
• The simple identity ∑

[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

)
≤ Nk+1

shows us where the need for the hypothesis (H2) comes in.
• We need an ergodic limit theorem that reads (roughly): If

F(x, u) := lim
t→∞

F(x, u, t), x ∈ E, u ∈ [0, 1],

"uniformly" for (u, x) ∈ [0, 1]× E, then

lim
t→∞

∫ 1

0
Tut[F(·, u, t)](x)du =

∫ 1

0
〈ϕ̃, F(·, u)〉du

"uniformly" for x ∈ E.
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THEOREM: SUPERCRITICAL (λ > 0)

Suppose that (H1) holds along with (H2)k for some k ≥ 2 and λ > 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1e−`λtT
(`)
t [f ](x)− `!〈f , ϕ̃〉`L`

∣∣∣ ,
where L1(x) = 1 and we define iteratively for k ≥ 2,

Lk =
1

λ(k− 1)

〈
ϕ̃, βE·

[ ∑
[k1,...,kN]2k

N∏
j=1

j:kj>0

ϕ(xj)Lkj

]〉
.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

"At subcriticality the k-th moment scales like eλkt (i.e. the first moment to the power k)"
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Theorem (Subcritical, λ < 0)
Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ < 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1e−λtT
(`)
t [f ](x)− `!〈f , ϕ̃〉`L`

∣∣∣ ,
where we define iteratively L1 = 〈f , ϕ̃〉 and for k ≥ 2,

Lk =
〈f k, ϕ̃〉
〈f , ϕ̃〉kk!

−
〈
βE·
[ k∑

n=2

1
λ(n− 1)

∑
[k1,...,kN]nk

N∏
j=1

j:kj>0

ϕ(xj)Lkj

]
, ϕ̃

〉
.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

"At subcriticality the k-th moment scales like eλt (i.e. like the first moment)"
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WHAT ABOUT SUPERPROCESSES?
• A Markov process X := (Xt : t ≥ 0) on M(E), the space of finite measures on

Lusin space E, with P := (Pµ, µ ∈ M(E)).
• Transition semigroup

Eµ
[

e−〈f ,Xt〉
]

= e−〈Vt[f ],µ〉, µ ∈ M(E), f ∈ B+(E),

where

Vt[f ](x) = Pt[f ](x)−
∫ t

0
Ps 〈ψ(·,Vt−s[f ](·)) + φ(·,Vt−s[f ])| (x)ds.

• Here ψ denotes the local branching mechanism

ψ(x, λ) = −b(x)λ+ c(x)λ2 +

∫
(0,∞)

(
e−λy − 1 + λy

)
ν(x,dy), λ ≥ 0, (4)

where b ∈ B(E), c ∈ B+(E) and (x ∧ x2)ν(x,dy) is a bounded kernel from E to
(0,∞), and φ is the non-local branching mechanism

φ(x, f ) = β(x)f (x)− β(x)γ(x, f )− β(x)

∫
M(E)◦

(1− e−〈f ,ν〉)Γ(x,dν),

where β ∈ B+(E), γ(x, f ) is a bounded function on E× B+(E) and ν(1)Γ(x,dν) is
a bounded kernel from E to M(E)◦ := M(E) \ { 0 }with

γ(x, f ) +

∫
M(E)◦

〈1, ν〉Γ(x,dν) ≤ 1.
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WHAT ABOUT SUPERPROCESSES?

• Keep the same notation e.g.

T
(k)
t [f ](x) := Eδx [〈f ,Xt〉k], x ∈ E, f ∈ B+(E), k ≥ 1, t ≥ 0.

• Under the same first ergodic moment assumption (H1) and (H2)k replaced by

sup
x∈E

(∫ ∞
0
|y|kν(x,dy) +

∫
M(E)◦

〈1, ν〉kΓ(x,dν)

)
<∞.

• A different proof is needed because we cannot work under the expectation with
individual particles.

• Instead an approach using Faa di Bruno’s formula can be used taking advantage
of the smoother branching mechanism than in the particle setting.

• The same conclusions hold for the critical, supercritical and subcritical setting as
for the branching particle setting, albeit the constants in the limit are slightly
different.
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Thank you!


