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(P, G)-BRANCHING MARKOV PROCESS

e Particles will live in E a Lusin space (e.g. a Polish space would be enough)
e LetP = (Pt,t > 0) be a semigroup on E.

e Write B* (E) for non-negative bounded measurable functions on E

e Particles evolve independently according to a P-Markov process.

e In an event which we refer to as ‘branching’, particles positioned at x die at rate
B € BT (E) and instantaneously, new particles are created in E according to a point
process.

o The configurations of these offspring are described by the random counting
measure

N
Z(4) =Y 54(4),
i=1

with probabilities Py, where x € E is the position of death of the parent.

o Without loss of generality we can assume that Px(N = 1) = 0. On the other hand,
we do allow for the possibility that Py(N = 0) > 0 for some or all x € E.

o Henceforth we refer to this spatial branching process as a (P, G)-branching
Markov process.
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(P, G)-BRANCHING MARKOV PROCESS
o Define the so-called branching mechanism

N
GIf(x) := B(x)€x [Hf(xi) —f(x)] ., x€E
i=1

where we recall f € B} (E) := {f € Bt (E) : sup,epf(x) < 1}.
o Configuration of particles at time t is denoted by {x;(t), ..., xy,(f)} and, on the
event that the process has not become extinct or exploded,

Ny
Xi() = Syp(),  t=0.
i=1

is Markovian in N(E), the space of integer atomic measures.
e Its probabilities will be denoted P := (P, 1 € N(E)).
e Define,

N
vi[f](x) = Es, [Hf(xi(f))] . feBf(E),t>0.
i=1

e Non-linear evolution semigroup

wlfl(x) = Bilf() + /0 B Glvis[fl] (s, £ >0.
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k-TH MOMENT

e Our main results concern understanding the growth of the k-th moment
functional in time

O (x) := Bs, [(f, X1)¥],  x € E,f € BY(E),k>1,t>0.

o Notational convenience: Write T; in place of Tfl)

o Our objective: to show that for k > 2 and any positive bounded measurable
function f on E,

Jim g(OEs, [{f, X" = Ci(x.f)

where the constant Ci(x, f) can be identified explicitly.

e We need two fundamental assumptions.
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ASSUMPTION (H1)

There exists an eigenvalue A € R and a corresponding right eigenfunction ¢ € BT (E)
and finite left eigenmeasure ¢ such that, for f € B*(E),

(Tilel, 1) = X, ) and (Tef], &) = e (f, @),

for all i € N(E) if (X, P) is a branching Markov process (resp. a superprocess). Further
let us define

Ar= sup e e NT[fl(x) — (8., t>0.
x€EfeB] ()

We suppose that
sup Ay < coand lim Ay = 0.
>0 t— o0

NOTE: This assumption allows us to talk about criticality of the (P, G)-BMP:

X = 0 (critical) | A > 0 (supercritical) | A < 0 (subcritical)
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ASSUMPTION (H2);

sup & ({1, Z2)) < oo.
x€kE
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THEOREM: THE CRITICAL CASE (A = 0)

Suppose that (H1) holds along with (H2), for some k > 2 and A = 0. Define

AD = sup Do) [ (x) — 27D (f, @) (Vigl, @)
x€EfeB] (E)

where

Viel(x) = B0E (0, 2 = (6%, 2)).

Then, for all ¢ < k

sup A(e) < oo and hm A(Z) =0.
£>0

In short, subject to (H1) at criticality and (H2),, we have, for f € Bf (E),

Jlim = DEs [(f, X)F] = 276 Darts, ) (vigl, 6 o)

"At criticality the k-th moment scales like 1"
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IDEAS FROM THE PROOF
o The obvious starting point:

T )(0) = (1)} 2o, fe= )

6=0

Recall that

N
vi[f](x) = Es, [Hf(xf(f))] . feBf(E),t>0.

i=1

e Non-linear evolution semigroup

t
wlf](x) = Bilf](x) + /O By [Glvimsf]] (¥)ds, > 0.

e Hence
vile™](x) = Es, [e X))

e We need a new representation of the non-linear semigroup (v¢,+ > 0) which
connects us to the assumption (H1).
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LINEAR TO NON-LINEAR SEMIGROUP

o Recall
L@ = 110 =Es[f. X, £20f€Bf(E)x€E.
e Forf € Bt (E), it is well known that the mean semigroup evolution satisfies

() = pilf] + /Ot B [FTims[f]] ()ds > 0,x € E, (1)

where

N
F[f](x) = B(x)€x [Zf(xz') —f(X)] = B (m[f](x) —f(x)), x€E

i=1
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LINEAR TO NON-LINEAR SEMIGROUP

We now define a variant of the non-linear evolution semigroup equation

N
ur[f](x) = Es, [1 - Hf(xi(t))

i=1

For f € B (E), define

N N
Alf](x) = B(x)Ex {H(l —f(x) =1+ Zf(x,v):l , xcE

i=1 i=1

t t
Vt[f](X)=Pt[f](X)+/0 Ps [G[vi—s[f]]] (x)ds and Tt[f](X)=Pr[f]+/0 Ps [FTi—s[f]] (x)ds

gives us.....

Lemma
Forallg € BfL (E), x € Eand t > 0, the non-linear semigroup u;[g](x) satisfies

t
urlg](x) = Ti[l — gJ(x) — /O Ts [A[ur—s[g]]] (x)ds.

10/ 18



NONLINEAR TO K-TH MOMENT EVOLUTION EQUATION

In terms of our new semigroup equation:

1O = (-1 L e

6=0

Theorem
Fix k > 2. Assuming (H1) and (H2)y, with the additional assumption that

sup TO[fl(x) < 00,  £<k—1,f€BV(E),t>0, @)
x€E,s<t
it holds that
w0 = miw + [ 5 sl w20 ®

where
k-1 (k)
Wnw =5 ¥ (" )Hft M|
lep,ooknl?

and [ky, . .. ,kN},% is the set of all non-negative N-tuples (ky, ..., kn) such that Zf\lzl ki=k

and at least two of the k; are strictly positive. /s



INDUCTION: k— k+1

e Suppose the result is true for the first k moments.
e Recall T4[f](x) — {f, @) (x) so that, for k > 2,

ke ekt
Jlim 757 (x) = 0

o [t k+1 ()
= gim e [nfe ) oy (" )Hrtsm (x)ds

(i kNTE ok
! k+1 0\
— lim ¢~ &1
tl_l)n;lot A Tut | €. Z i (kl,A )1:[1 t(l u)[f] x] (x)du
[SERCNI j=
(k)
. 1 k+1 N (1 — u))frt=#Uk>00 2T [f1(x;)
= tl—l>rgo Tut €. r k )( ( ))tk—l t(]l “) ]] (x)du
0 fokaly, N =t (1= u)f
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ROUGH OUTLINE OF THE INDUCTION: k — k + 1

e From the last slide:

. —kn(k+1
Jim )

: *)
. kH1—#{j:k>0y N 7 .
L 11”[5.[ > ( k+1 )(t(l—u)) 1= (k>0 i Tfu_u)[ﬂ(xJ)H(x)du
k

t=o0 Jo p. Kk k=1 3 (1wt
1o kNTj g

o Largest terms in blue correspond to those summands for which #{j : k; > 0} =2

o The induction hypothesis plus Zf\’: 1k = k + 1 ensures that the product term is
asymptotically a constant

o The simple identity

Z (k k+1 )SNIH—l
1,

ok

shows us where the need for the hypothesis (H2) comes in.
e We need an ergodic limit theorem that reads (roughly): If

F(x,u) := [E)nolcl:(x, u, t) x € E,uecl0,1],

"uniformly" for (i, x) € [0,1] x E, then

1 1
lim Tut[F(-,u, t)](x)du = / (@, F(-,u))du
0 0

t—o00

"uniformly" for x € E. n



THEOREM: SUPERCRITICAL (A > 0)

Suppose that (H1) holds along with (H2), for some k > 2 and A > 0. Redefine

A= swp e Tle M) — 0, @) L
X€EEfEB (E)

where L1 (x) = 1 and we define iteratively for k > 2,

1 ) N
Ly = m <<P, BE. [ Z H ‘P(xj)Lk]} > .

Ty seensky]? =1
K jek;>0

Then, for all ¢ < k

sup At(z) < ocand lim At(e) =0.
>0 t—o0

"

"At subcriticality the k-th moment scales like e* (i.e. the first moment to the power k)
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Theorem (Subcritical, A < 0)
Suppose that (H1) holds along with (H2) for some k > 2 and X\ < 0. Redefine

AP = s Je@ e M) — e, @) Le
x€EfEB] (E)
where we define iteratively Ly = (f, ¢) and fork > 2,
~ k N
() { 1 ] .
Ly = — . — i) L. .
= B BE Z)\(n—l) > I iy |.¢

n=2 [y, kn ] =1
jiki>0

Then, for all £ < k

sup AEZ) < ocoand lim Afz) =0.
>0 t—o0

"At subcriticality the k-th moment scales like e (i.e. like the first moment)"
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WHAT ABOUT SUPERPROCESSES?

A Markov process X := (X; : t > 0) on M(E), the space of finite measures on
Lusin space E, with P := (P, un € M(E)).
Transition semigroup

E, [em 00 ] = el e M(E).f € BT (E),
where
Ve[f](x) = Pelf](x) — /Ot Ps (0 (-, Vi—s[f1(-)) + &(, Vis[fD)] (x)ds
Here 1 denotes the local branching mechanism

(0, A) = —b(O)A + c(x) N2 + (e =1+ x)vxdy), A0, @
(0.00)

where b € B(E), ¢ € BT (E) and (x A x?)v(x, dy) is a bounded kernel from E to
(0, 00), and ¢ is the non-local branching mechanism

605) = B = BN =60 [ (e ran),

where 8 € Bt (E), v(x,f) is a bounded function on E x B (E) and v(1)I'(x, dv) is
a bounded kernel from E to M(E)°® := M(E) \ {0} with

'y(xf—l-/ D(x,dv) <1.
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WHAT ABOUT SUPERPROCESSES?

o Keep the same notation e.g.
T (x) == Eo [(f, X0)¥,  x€EfeBr(E)k>1,t>0.

e Under the same first ergodic moment assumption (H1) and (H2); replaced by

sup (/ y[Fv(x, dy) +/ (1, )T (x, du)) < 00.
x€E 0

e A different proof is needed because we cannot work under the expectation with
individual particles.

e Instead an approach using Faa di Bruno’s formula can be used taking advantage
of the smoother branching mechanism than in the particle setting.

© The same conclusions hold for the critical, supercritical and subcritical setting as
for the branching particle setting, albeit the constants in the limit are slightly
different.
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